Locality sensitivity discriminant analysis-based feature ranking of human emotion actions recognition

نویسندگان

  • Nurnadia M. Khair
  • M. Hariharan
  • S. Yaacob
  • Shafriza Nisha Basah
چکیده

[Purpose] Computational intelligence similar to pattern recognition is frequently confronted with high-dimensional data. Therefore, the reduction of the dimensionality is critical to make the manifold features amenable. Procedures that are analytically or computationally manageable in smaller amounts of data and low-dimensional space can become important to produce a better classification performance. [Methods] Thus, we proposed two stage reduction techniques. Feature selection-based ranking using information gain (IG) and Chi-square (Chisq) are used to identify the best ranking of the features selected for emotion classification in different actions including knocking, throwing, and lifting. Then, feature reduction-based locality sensitivity discriminant analysis (LSDA) and principal component analysis (PCA) are used to transform the selected feature to low-dimensional space. Two-stage feature selection-reduction methods such as IG-PCA, IG-LSDA, Chisq-PCA, and Chisq-LSDA are proposed. [Results] The result confirms that applying feature ranking combined with a dimensional-reduction method increases the performance of the classifiers. [Conclusion] The dimension reduction was performed using LSDA by denoting the features of the highest importance determined using IG and Chisq to not only improve the effectiveness but also reduce the computational time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

A Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection

Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...

متن کامل

Face Recognition by Cognitive Discriminant Features

Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...

متن کامل

Optimized Discriminant Locality Preserving Projection of Gabor Feature for Biometric Recognition

Discriminant locality preserving projection(DLPP) can not obtain optimal discriminant vectors which utmostly optimize the objective of DLPP. This paper proposed a Gabor based optimized discriminant locality preserving projections (ODLPP) algorithm which can directly optimize discriminant locality preserving criterion on high-dimensional Gabor feature space via simultaneous diagonalization, with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2015